Mark Scheme 4729
 June 2006

1		$\begin{aligned} & \mathrm{mgh}=35 \times 9.8 \times 4 \\ & \\ & \mathrm{mgh} / \mathrm{t}=1372 / 10 \\ & 137 \mathrm{~W} \end{aligned}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	4	watch out for extras or 0.137 kW	4
2		$\begin{aligned} & \mathrm{v}^{2}=2 \mathrm{gh} \\ & u=\sqrt{ } 4 \mathrm{~g} \text { or } \sqrt{ } 39.2 \text { or } 6.26 \\ & \mathrm{v}=\sqrt{ } 2.8 \mathrm{~g} \text { or } \sqrt{ } 27.44(5.24) \\ & \mathrm{l}=\mathrm{P} 0.3(6.26+5.24) \\ & 3.45 \mathrm{Ns} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 / \end{aligned}$	5	kinematics or energy speed of impact (\pm) speed of rebound (\pm) must be sum of mags. of vels. \checkmark must be positive	2 5
3	(i)	$\begin{aligned} & \mathrm{d}=2.25 \\ & \mathrm{~h}=1.125 \text { or } 1.12 \text { or } 1.13 \\ & \text { or } 9 / 8 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	2	3/8x6 OG (be generous) horizontal distance	
	(ii)	$\begin{aligned} & \mathrm{T}_{1}+\mathrm{T}_{2}=12 \text { resolving } \\ & \quad \text { vertically } \\ & \mathrm{T}_{1} \times 6 \cos 30^{\circ}=12 \times \mathrm{h} \\ & \text { (their } \mathrm{h} \text {) } \\ & \text { mom }(\mathrm{O}) \text { (their } \mathrm{h} \text { ok for } \mathrm{A} 1 \text {) } \\ & \mathrm{T}_{1}=2.60 \mathrm{~N} \quad \text { or } 3 \sqrt{ } 3 / 2 \\ & \mathrm{~T}_{2}=9.40 \mathrm{~N} \quad \int\left(12-\mathrm{T}_{1}\right) \end{aligned}$ $\text { above } \int \text { depends on at leas }$	M1 M1 A1 A1 A1/ one	5	if not then next M1 ok or $\operatorname{mom}(A) \mathrm{T}_{2} \times 6 \cos 30^{\circ}=$ $12\left(6 \cos 30^{\circ}-\mathrm{h}\right)$ or $\mathrm{T}_{2}=9.40$ or $\mathrm{T}_{1}=2.60$ or $\sqrt{\left(12-\mathrm{T}_{2}\right)}$ M marks $\left(\mathrm{T}_{\mathrm{s}}>0\right)$	7
4	(i)	$\mathrm{P}=13500 \mathrm{~W}$	B1	1	or 13.5 kW	
	(ii)	$\begin{aligned} & 500=13500 / \mathrm{v} \\ & \mathrm{v}=27 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	2		
	(iii)	$\begin{aligned} & 15000 / 25-500=950 \mathrm{a} \\ & a=0.105 \text { or } 2 / 19 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \end{aligned}$	3	2 parts to F AO for 900a or 100/950	
	(iv)	$\begin{aligned} & 15000 / 26-500- \\ & 950.9 .8 \sin 5^{\circ}=950 \mathrm{a} \\ & \mathrm{a}=(-) .773 \mathrm{~ms}^{-2} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \end{aligned}$	3	3 parts to F A0 for 900a s.c. accept 0.77	9
5	(i)	$\begin{aligned} & \bar{x}=9 \\ & \mathrm{c} \text { of } \mathrm{m} \text { of } \Delta 4 \mathrm{~cm} \text { above BD } \\ & \\ & (324+108)(\mathrm{m}) \bar{y}= \\ & 324(\mathrm{~m}) \times 9+108(\mathrm{~m}) \times(18+4) \\ & 432 \bar{y} \\ & 324 \times 9 \quad\left(18^{2} \times 9\right) \\ & 108 \times(18+4) \\ & \bar{y}=12.25 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \end{aligned}$	7	ignore any working 8 cm below C/see their diagram $432 \bar{y}=108 \times 8+18^{2}(12+9)$ from C left hand side $1^{\text {st }}$ term on right hand side 2916 $2^{\text {nd }}$ term on right hand side 2376 $5292 \div 432$ or $49 / 4$	
	(ii)	$\begin{aligned} & \tan \theta=5.75 / 9 \\ & \theta=32.6^{\circ} \text { or } 147.4^{\circ} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	$\begin{aligned} & \text { must be .../9 } \\ & \sqrt{\tan ^{-1}}((18-\text { their } \bar{y}) / 9) \text { or } 180^{\circ} . . \end{aligned}$	9

6	(i)	$\begin{aligned} & \mathrm{T}=4.9 \mathrm{~N} \\ & \mathrm{~T}=0.3 \times 0.2 \times \omega^{2} \\ & \omega=9.04 \mathrm{rads}^{-1} \end{aligned}$	$\begin{array}{\|l} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$	4	$\begin{aligned} & \text { B0 for } 0.5 \mathrm{~g} \\ & \text { or } 0.3 \mathrm{v}^{2} / 0.2 \text { and } \omega=\mathrm{v} / 0.2 \end{aligned}$	6
	(ii)	$\begin{aligned} & \cos \theta=\sqrt{0.6 / 0.8}(0.968) \\ & \mathrm{T} \cos \theta=0.5 \times 9.8 \\ & \mathrm{~T}=5.06 \mathrm{~N} \end{aligned}$	B1 M1 A1 A1		($\theta=14.5^{\circ}$) angle to vert. or equiv. angle consistent with diagram can be their angle	
	(iii)	$\begin{aligned} & \mathrm{T} \sin \theta=0.5 \mathrm{x}^{2} / 0.2 \\ & \mathrm{v}=0.711 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	must be a component of T $(\sin \theta=1 / 4)$ can be their angle	11
7	(i)	$\begin{aligned} & v \sin 50^{\circ} \\ & 0=v^{2} \sin ^{2} 50^{\circ}-2 \times 9.8 \times 13 \text { (must } \\ & b e 13 \text {) } \\ & v=20.8 \mathrm{~ms}^{-1} \end{aligned}$	B1 M1 A1	3	initial vertical component or $m \times 9.8 \times 13=1 / 2 m\left(v \sin 50^{\circ}\right)^{2}$ sin/cos mix ok for above M1	
	(ii)	$\begin{aligned} & 45=\text { vocos } 50^{\circ} . t \\ & t=3.36 \sqrt{t} \text { their } v(3.13 \text { for } \\ & v=22.4) \\ & s=v \sin 50^{\circ} \times t-1 / 2 \times 9.8 \mathrm{xt}^{2} \\ & \mathrm{~s}=-1.6 \text { to }-2.0 \text { inclusive } \\ & (-1.68) \\ & \text { ht above ground }=0.320 \mathrm{~m} \end{aligned}$	M1 A1/ M1 A1 A1 A1		see alternative below other methods include other t_{s} ignore ht adjustments can be their v and their t can be implied from next A1	
	(iii)	$\begin{aligned} & v_{v}=v \sin 50^{\circ}-9.8 \mathrm{xt} \\ & \mathrm{v}_{\mathrm{v}}=-17.0 \int \text { their } \mathrm{v}, \mathrm{t}(-13.5 \\ & \text { for 22.4) } \\ & \text { speed }=\sqrt{ }\left(\mathrm{v}_{\mathrm{v}}{ }^{2}+\left(\mathrm{vcos} 50^{\circ}\right)^{2}\right) \\ & \text { speed }=21.6 \mathrm{~ms}^{-1} \int \text { their } \mathrm{v} \\ & \text { and } \mathrm{v}_{\mathrm{v}} \\ & (19.7 \text { for } \mathrm{v}=22.4) \end{aligned}$	M1 A1 δ M1 A1 δ	4	```or \(v_{v}{ }^{2}=2 g(15-t h e i r ~ a n s ~ t o ~ i i) ~\) \(\int\) above for \(\mathrm{v}_{\mathrm{v}}\) or \(1 / 2 \mathrm{mv}^{2}-\mathrm{mgx} 1.68=\) \(1 / 2 m \times 20.8^{2}\) (4 marks) M1/A1 \(\int \mathrm{s}, \mathrm{v} / \mathrm{M} 1\) solve/ A1 \(\sqrt{ }\)```	13
	(ii)	$\begin{aligned} & y=x \tan \theta-g x^{2} / 2 v^{2} \cos ^{2} \theta \\ & y=45 \tan 50^{\circ}- \\ & 9.8 .45^{2} / 2 . v^{2} \cos ^{2} 50^{\circ} \\ & \text { calculate } y \\ & y=-1.6 \text { to }-2.0 \text { inclusive } \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$		Alternative $1^{\text {st }} 5$ marks substitute v and 50° and $x=45$ can be their v should be-1.68	

physicsandmathstutor.com

± 1 in $3^{\text {rd }}$ sig. fig. except where stated

